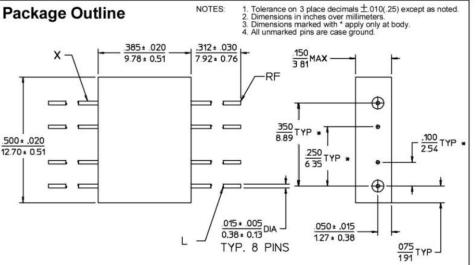
# DTF-2A-1250 SQ


## **TECHNICAL FEATURE**

### **FEATURES**

- 1 to 3500 MHz
- +10 to +15 dBm LO
- Hi-Rel Hermetic Package

| RF/LO             | LO<br>Drive,<br>Nom. | Operating<br>Range,<br>MHz            | Conversion<br>Loss, dB                                                           |                                                                                                                  | Port Isolation, Min.                                                                                                   |                                                                                                                |                                                                                                                                                                                                      | 1 dB                                                                                                                                                                     | Input                                                                                                                                                                                                        | 1 dB<br>Desens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|----------------------|---------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency,<br>MHz |                      |                                       | Max.                                                                             | Тур.                                                                                                             | L-R<br>dB                                                                                                              | L-X<br>dB                                                                                                      | R-X<br>dB                                                                                                                                                                                            | Compr.<br>Point                                                                                                                                                          | Intercept<br>Point                                                                                                                                                                                           | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | +10 dBm              | 10-200                                | 7.5                                                                              | 6.5                                                                                                              | 30                                                                                                                     | 30                                                                                                             | 30                                                                                                                                                                                                   | +7 dBm<br>(typ.)                                                                                                                                                         | +14 dBm<br>(typ.)                                                                                                                                                                                            | +5 dBm<br>(typ.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1-3500            |                      | 200-2500                              | 8.5                                                                              | 7.0                                                                                                              | 25                                                                                                                     | 25                                                                                                             | 23                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                      | 1-3500                                | 9.5                                                                              | 8.0                                                                                                              | 25                                                                                                                     | 25                                                                                                             | 20                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _                 | Frequency,<br>MHz    | RF/LO<br>Frequency,<br>MHz<br>+10 dBm | RF/LO<br>Frequency,<br>MHzDrive,<br>Nom.Range,<br>MHz1-3500+10 dBm10-200200-2500 | RF/LO<br>Frequency,<br>MHz  Drive,<br>Nom.  Range,<br>MHz  Loss    +10 dBm  10-200  7.5    1-3500  200-2500  8.5 | RF/LO<br>Frequency,<br>MHz  Drive,<br>Nom.  Range,<br>MHz  Loss, dB    +10 dBm  10-200  7.5  6.5    200-2500  8.5  7.0 | RF/LO<br>Frequency,<br>MHz  Drive,<br>Nom.  Range,<br>MHz  Loss, dB    +10 dBm  10-200  7.5  6.5  30    1-3500 | RF/LO<br>Frequency,<br>MHz  Drive,<br>Nom.  Range,<br>MHz  Loss, dB  Loss, dB    Max.  Typ.  L-R<br>dB  L-X<br>dB  Loss, dB    1-3500  +10 dBm  10-200  7.5  6.5  30  30    1-3500  8.5  7.0  25  25 | RF/LO<br>Frequency,<br>MHz  Drive,<br>Nom.  Range,<br>MHz  Loss, dB     1-3500  +10 dBm  10-200  7.5  6.5  30  30  30    1-3500  +10 dBm  200-2500  8.5  7.0  25  25  23 | RF/LO<br>Frequency,<br>MHzDrive,<br>Nom.Range,<br>MHzLoss, dBImage:<br>Loss, dB1 dB<br>Loss, dBMax.Typ.L-R<br>dBL-X<br>dBR-X<br>dBCompr.<br>Point1-3500+10 dBm<br>200-250010-2007.56.5303030+7 dBm<br>(typ.) | RF/LO<br>Frequency,<br>MHzDrive,<br>Nom.Range,<br>MHzLoss, dBImage,<br>Loss, dBLoss, dBImage,<br>Loss, dBImage,< |

All Specifications are as measured in a  $50\Omega$  system, at nominal LO power in a down converter application



#### General Specifications

| IF Frequency Range:                   | 1-1000 MHz             |
|---------------------------------------|------------------------|
| Impedance:                            | 50 Ω Nom.              |
| 3 <sup>rd</sup> Order Intermodulation |                        |
| Ratio Degradation:                    | 3 dB typ. For IF       |
|                                       | VSWR of 3.0:1          |
| Useful LO Drive Range:                | +/- 3 dB Nom.          |
| SSB Noise Figure:                     | Within +/- 1 dB of     |
|                                       | <b>Conversion Loss</b> |
| Weight, Nom.:                         | 0.15 oz (4.2g)         |
| Operating Temperature:                | -55°C to + 85°C        |
|                                       |                        |

#### **General Notes:**

- The DTF-A series Termination Insensitive Mixer cover the frequency range of 1 to 3500 MHz using transmission line hybrid junction techniques to isolate the diode rings from termination mismatch-induced reflections. This means the intermodulation ratio is independent of the IF port load impedance, so this unit is ideal for applications where a high performance mixer must drive a reactive load (e.g. filter) at the IF port. The DTF-A series and related models are available in PC, SMD and connectorized packages.
- 2. Crane offers a broad selection of Double Balanced Mixers ideal for a variety of signal processing functions with frequencies ranging from 20 kHz to 20 GHz and for applications from routing to very special.
- 3. Crane mixers comply with MIL-M-28837 and is qualified for Space Application requiring the highest reliability.



DTF2A.doc. This revision supersedes all previous releases. All technical information is believed to be accurate, but no responsibility is assumed for errors. We reserve the right to make changes in products or specifications without notice. Copyright © 2013 Crane Electronics, Inc. All rights reserved.